声测管(Sonic Logging Pipe)是现不可少的声波检测管,利用声测管可以检测出一根桩的质量好坏,声测管是灌注桩进行超声检测法时探头进入桩身内部的通道。它是灌注桩超声检测系统的重要组成部分,它在桩内的预埋方式及其在桩的横截面上的布置形式,将直接影响检测结果。因此,需检测的桩应在设计时将声测管的布置和埋置方式标入图纸,声测管材质的选择,以透声率较大、便于安装及费用较低为原则。
声脉冲从发射换能器发出,通过耦合水到达水和声测管管壁的界面,再通过管壁到达声测管管壁与混凝土的界面,穿过混凝土后又需穿过另一声测管的两个界面而到达接收换能器。
因此,声测管形成4个界面,每个界面的声能透过系数可按下式计算:
式中:
——某界面的声能透过系数;
——界面两侧介质的声阻抗率
发射和接收换能器之间4个界面的总透声系数为在施工时应严格控制埋置的质量,以确保检测工作顺利进行。
当为某桥的**根桩时,必须进行抽芯检测。
②、当为某桥的非**根桩时,施工单位按附表1的格式填写《变更检测方法申请表》,并经监理、业主代表和监督负责人签名同意后,予以实施。
③、若某桥多次出现堵管问题,须适时进行抽芯检测。
4、增加的检测费用由施工单位承担。
[4] 5、监理须要求施工单位在申报检测前对声测管进行检查;当需更改检测方案时,提前完善相关手续,避免因声测管检测问题影响施工的顺利推进。
换能器间用隔声材料隔离(或采用**的一发双收换能器)。超声波从发射换能器出发经耦合水进入孔壁混凝土表层,并沿混凝土表层滑行一段距离后,再经耦合水分别到达两个接收换能器上,从而测出超声波沿孔壁混凝土传播时的各项声学参数。需要注意的是,运用这一检测方式时,必须运用信号分析技术,排除管中的影响干扰,当孔道中有钢质套管时,由于钢管影响超声波在孔壁混凝土中的绕行,故不能用此法。
常用的基桩动测方法包括低应变反射波法、高应变动测法、超声波法、动测法等。超声波法检测基桩由于检测精度高、不受桩长、桩径条件限制、测试无盲区等优点,在混凝土基桩检测中应用越来越普及。其检测原理是对计划采用超声波法检测桩身质量的基桩,施工时在桩身中埋入声测管,检测时发射换能器和接收换能器分别置于两根管道中,由声测管底部开始,发射探头在某一个声测管中边上升边发射高频信号,该高频信号穿过混凝土被另一个声测管中同步移动的接收换能器所探测。随着探头沿整个桩长提升,依次测取各测点超声脉冲穿过两管道之间的混凝土,通过实测超声波在混凝土介质中传播的声时、波幅和频率等参数的相对变化来检测声测管之间混凝土的缺陷位置及影响程度,
此法是一种较成熟可靠的方法,是超声波透射法检测桩身质量的较主要形式,其方法是在桩内预埋两根或两根以上的声测管,在管中注满清水,把发射、接收换能器分别置于两管道中。检测时超声波由发射换能器出发穿透两管间混凝土后被接收换能器接收,实际有效检测范围为声波脉冲从发射换能器到接收换能器所扫过的面积。
声阻抗率较低,用做声测管具有较大的透声率,通常可用于较小的灌注桩,在大型灌注桩中使用时应慎重,因为大直径桩需灌注大量混凝土,水泥的水化热不易发散:鉴于塑料的热膨胀系数与混凝土的相差悬殊,混凝土凝固后塑料管因温度下降而产生径向和纵向收缩,有可能使之与混凝土局部脱开而造成空气或水的夹缝,在声通路上又增加了更多反射强烈的界面,*造成误判。
声测管的直径,通常比径向换能器的直径大l0mm即可,常用规格是内径50-60mm。管子的壁厚对透声率的影响很小,所以,原则上对管壁厚度不作限制,但从节省用钢量的角度而言,管壁只要能承受新浇混凝土的侧压力,则越薄越省。
结构编辑
声测管可直接固定在钢筋笼内侧上:固定方式可采用焊接或绑扎,管子之间应基本上保持平行-若检测结果需对各测点混凝土的强度做出评估,则不平行度应控制在1‰以下。钢筋笼放入桩孔时应防止扭曲。[1]
管子一般随钢筋笼分段安装,每段之间的接头可采用反螺纹套筒接口或套管焊接方案,如图8所示:若采用波纹管则可利用大一号的波纹管套接,并在套接管的两端用胶布缠绕密封。无论那种接头方案都必须保证在较高的静水压力下不漏浆,接口内壁应保持平整,不应有焊渣、毛刺等凸出物,以免妨碍探头的自如移动,声测管的底部也应密封,安装完毕后应将上口用木塞堵住,以免浇灌混凝土时落入异物,致使孔道堵塞。[2]

工程建设领域钻孔灌注桩作为一种重要的基桩形式,其质量直接影响构筑物的安全。超声波法是当前检测桩身完整性的较有效较准确的检测方法,而声测管的埋设决定了超声波法检测能否顺利进行,如何加强声测管质量控制也越来越重要。阐述了加强声测管质量控制的措施,以期基桩检测顺利进行,工程质量得到保证。
-/gbababa/-
http://jun349026146.cn.b2b168.com